A (p,q)-oscillator realization of two-parameter quantum algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L711
(http://iopscience.iop.org/0305-4470/24/13/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:54

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A ($p, q)$-oscillator realization of two-parameter quantum algebras

R Chakrabarti \dagger and R Jagannathan \ddagger
\dagger Department of Theoretical Physics, University of Madras, Guindy Campus, Madras-600 025, India
\ddagger The Institute of Mathematical Sciences, CIT Campus, Tharamani, Madras-600 113, India

Received 4 April 1991

Abstract

It is noted that the study of a quantum algebra $\mathrm{su}_{p .4}(2)$, with two independent deformation parameters (p, q), leads to a ' (p, q)-oscillator' realization for it. The analysis is extended to the (p, q)-analogues of $\operatorname{su}(1,1)$,osp $(2 \mid 1)$ and the centreless Virasoro algebra. The standard single-parameter (q) deformations are obtained in the limit $p=q$.

Quantum algebras [1,2] arise as the underlying mathematical structure in several contexts like quantum inverse scattering theory, solutions of the Yang-Baxter equation, and rational conformal field theory [3,4]. These algebras may be viewed as deformations of classical Lie algebras, depending, in general, on one or more parameters. The representation theory of quantum algebras with a single deformation (or quantization) parameter q, has led to the development of q-deformed oscillator algebras [5-10]. Similar deformed oscillator algebras have been studied earlier [11-13] with a view to exploring new quantization procedures. These q-oscillators may lead to a new kind of field theory where a small violation of the Pauli exclusion principle and deviations from the Bose statistics may be discussed [14-16]. In addition, the q-analogues of the parabose and parafermi oscillators [17] and the supersymmetric quantum mechanical algebras $[18,19]$ have been considered. The implications of q-deformed algebraic structures in concrete physical models such as the Jaynes-Cummings model in quantum optics have been investigated [20].

From the point of view of applicability in concrete physical models, quantum algebras with multiparameter deformations [21-23] are of interest. But it has been argued $[24,25]$ that any quantum algebra with one or more deformation parameters may be mapped onto the standard single-parameter case. Recently, while studying a two-parameter (p, q) deformation of GL(2) it has been noted [26] that the corresponding quantum algebra $\mathrm{gl}_{p, q}(2)$ may be mapped onto the standard deformation of $\mathrm{gl}(2)$ with a single parameter equal to $\sqrt{q p}$. However, significantly, it has been emphasized in [26] that p and q are two genuinely independent quantization parameters as exhibited by the comultiplication rules and the structure of the endomorphisms of the quantum group acting on the underlying non-commutative space as embodied in the R-matrix. Now, knowing the convenience of the language of q-oscillators in describing the representations of the quantum algebras with a single deformation parameter q, it is natural to seek a ' p, q)-oscillator' realization of the (p, q)-deformed algebras. Here, we first notice that there is a (p, q)-oscillator realization for a (p, q)-deformed su(2); then, the analysis is extended to the (p, q)-analogues of $\operatorname{su}(1,1), \operatorname{osp}(2 \mid 1)$ and the centreless Virasoro algebra.

To define an $\mathrm{su}_{p, q}(2)$ algebra, we start, as implied by [26], by considering the standard deformation of $\operatorname{su}(2)$ with a single parameter equal to $\sqrt{q p}$

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\frac{(q p)^{J_{0}}-(q p)^{-J_{0}}}{(q p)^{1 / 2}-(q p)^{-1 / 2}}=\left[2 J_{0}\right]_{(q p)^{1 / 2}} \tag{1}
\end{equation*}
$$

Using a map $J \rightarrow \tilde{J}$ defined by

$$
\begin{equation*}
\tilde{J}_{0}=J_{0} \quad \tilde{J}_{+}=\left(\tilde{J}_{-}\right)^{\dagger}=\left(q p^{-1}\right)^{(1 / 2)\left(J_{0}-1 / 2\right)} J_{+} \tag{2}
\end{equation*}
$$

we obtain the commutation relations

$$
\begin{equation*}
\left[\tilde{J}_{0}, \tilde{J}_{ \pm}\right]= \pm \tilde{J}_{ \pm} \quad \tilde{J}_{+} \tilde{J}_{-}-q^{-1} p \tilde{J}_{-} \tilde{J}_{+}=\left[2 \tilde{J}_{0}\right]_{p, q} \tag{3}
\end{equation*}
$$

where we define

$$
\begin{equation*}
[X]_{p, q}=\frac{q^{X}-p^{-X}}{q-p^{-1}} . \tag{4}
\end{equation*}
$$

The commutation relations (3) constitute an $\mathrm{su}_{p, q}(2)$ algebra with ($\tilde{J}_{0}, \tilde{J}_{ \pm}$) as the generators. Note that in the limit $p=q,[X]_{p, q} \rightarrow[X]_{q}$ and $s u_{p, q}(2) \rightarrow s u_{q}(2)$. The coproduct rules

$$
\begin{equation*}
\Delta\left(\tilde{J}_{0}\right)=\tilde{J}_{0} \otimes 1+1 \otimes \tilde{J}_{0} \quad \Delta\left(\tilde{J}_{ \pm}\right)=q^{J_{0}} \otimes \tilde{J}_{ \pm}+\tilde{J}_{ \pm} \otimes p^{-\tilde{J}_{0}} \tag{5}
\end{equation*}
$$

refer to an algebra homomorphism for (3). The $q \leftrightarrow p^{-1}$ symmetry in (3), and consequently in (5), reduces to the $q \leftrightarrow q^{-1}$ symmetry in the case of $\mathrm{su}_{q}(2)$.

The commutation relations (3) may be described in terms of an R-matrix [3, 26]. With

$$
R=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \tag{6}\\
0 & q p^{-1} & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right) \quad \lambda=q-p^{-1}
$$

a constant solution to the Yang-Baxter equation, the relations (3) translate to

$$
\begin{equation*}
R\left(L^{\left(\varepsilon_{1}\right)} \otimes 1\right)\left(1 \otimes L^{\left(\varepsilon_{2}\right)}\right)=\left(1 \otimes L^{\left(\varepsilon_{2}\right)}\right)\left(L^{\left(\varepsilon_{1}\right)} \otimes 1\right) R \tag{7}
\end{equation*}
$$

where $\left(\varepsilon_{1}, \varepsilon_{2}\right)=(+,+),(-,+),(-,-)$ and

$$
L^{(+)}=\left(\begin{array}{cc}
q^{J_{0}} & \lambda q^{-1} p \tilde{J}_{+} \tag{8}\\
0 & p^{-\tilde{J}_{0}}
\end{array}\right) \quad L^{(-)}=\left(\begin{array}{cc}
p^{-J_{0}} & 0 \\
-\lambda \tilde{J}_{-} & q^{j_{0}}
\end{array}\right)
$$

The coproduct is determined by

$$
\begin{equation*}
\Delta\left(L^{(\pm)}\right)=L^{(\pm)} \dot{\otimes} L^{(\pm)} \tag{9}
\end{equation*}
$$

where $\dot{\otimes}$ denotes the tensor product combined with the usual matrix multiplication. As emphasized in [26], it is seen that the deformation parameters p and q may be varied independently. Hereafter, $[X]_{p, q}$ defined by (4) for any X, will be denoted, in general, simply as $[X]$; similarly, in other (p, q)-related expressions the ' p, q ' index will not be, in general, exhibited explicitly.

Following [24, 25], the nonlinear maps relating the generators ($\left.j_{0}, j_{+}, j_{-}=\left(j_{+}\right)^{\dagger}\right)$ of the classical su(2) to the corresponding elements of $s u_{p, q}(2)$ may be defined as

$$
\begin{equation*}
\tilde{J}_{0}=j_{0} \quad \tilde{J}_{+}=\left(\tilde{J}_{-}\right)^{\dagger}=\left\{\frac{\left(q^{-1} p\right)^{j-j_{0}}\left[j-j_{0}+1\right]\left[j+j_{0}\right]}{\left(j-j_{0}+1\right)\left(j+j_{0}\right)}\right\}^{1 / 2} j_{+} \tag{10}
\end{equation*}
$$

for an integral or half-integral j. Now, the $(2 j+1)$-dimensional representation follows immediately

$$
\begin{align*}
& \tilde{J}_{0}|j, m\rangle=m|j, m\rangle \quad m=j, j-1, \ldots,-j \tag{11}\\
& \tilde{J}_{ \pm}|j, m\rangle=\left\{\left(q^{-1} p\right)^{j-m-(1 \pm 1) / 2}[j \mp m][j \pm m+1]\right\}^{1 / 2}|j, m \pm 1\rangle .
\end{align*}
$$

To check that this representation satisfies the algebra (3) we use the identity

$$
\begin{equation*}
\left(q^{-1} p\right)^{n_{2}}\left\{\left[n_{1}\right]\left[n_{2}+1\right]-\left[n_{2}\right]\left[n_{1}+1\right]\right\}=\left[n_{1}-n_{2}\right] . \tag{12}
\end{equation*}
$$

In the limit $p=q$ this identity reduces to the familiar relation

$$
\begin{equation*}
\left[n_{1}\right]_{q}\left[n_{2}+1\right]_{q}-\left[n_{2}\right]_{q}\left[n_{1}+1\right]_{q}=\left[n_{1}-n_{2}\right]_{q} . \tag{13}
\end{equation*}
$$

Except when p and q are such that $p^{-n}=q^{n}$ for some $n>0, \mathrm{su}_{p, q}(2), \mathrm{su}_{\sqrt{q p}}(2)$ and $\operatorname{su}(2)$ provide nonlinear realizations of each other and their representation theories have close kinship. We take, throughout, p and q to be real, and such, that $[n]>0$ for any $n>0$, unless otherwise specified.

Let us now consider the representation (11) in the limit $j \rightarrow \infty$. Defining

$$
\begin{equation*}
N=\lim _{j \rightarrow \infty}\left(j-\tilde{J}_{0}\right) \quad A=\left(A^{\dagger}\right)^{\dagger}=\lim _{j \rightarrow \infty}\left(q p^{-1}\right)^{\left(j-\tilde{J}_{0}\right) / 2}\left[j+\tilde{J}_{0}\right]^{-1 / 2} \tilde{J}_{+} \tag{14}
\end{equation*}
$$

it is found that the spectrum of N becomes $(0,1,2, \ldots)$ and

$$
\begin{align*}
& {[N, A]=-A \quad\left[N, A^{\dagger}\right]=A^{\dagger}} \tag{15a}\\
& A A^{\dagger}-q A^{\dagger} A=p^{-N} \tag{15b}\\
& A A^{\dagger}-p^{-1} A^{\dagger} A=q^{N} \tag{15c}
\end{align*}
$$

To see this, one has to note that in the representation (11)

$$
\begin{equation*}
A A^{\dagger}=[N+1] \quad A^{\dagger} A=[N] \tag{16}
\end{equation*}
$$

and the definition (4) implies

$$
\begin{equation*}
[n+1]=q[n]+p^{-n}=p^{-1}[n]+q^{n} \quad \text { for } n=0,1,2, \ldots \tag{17}
\end{equation*}
$$

It is natural to identify A, A^{\dagger} and N, obeying the commutation relations (15), respectively as the annihilation, creation and the excitation number operators of a ' (p, q) oscillator' since in the limit $p=q$ the relations characterize the q-oscillator. Thus, we notice that the $\mathrm{su}_{p, q}(2)$ algebra (3) leads to a (p, q)-oscillator in the same way as the $\mathrm{su}_{q}(2)$ algebra leads to the q-oscillator under contraction [10]. It may be noted that the relations (15b) and (15c) imply each other and this $q \leftrightarrow p^{-1}$ symmetry generalizes the $q \leftrightarrow q^{-1}$ symmetry of the q-oscillator.

The Fock space representation of a single-mode (p, q)-oscillator may be specified as follows. Let a, a^{\dagger} and N denote, generally, the annihilation, creation and the number operators. With $\{|n\rangle \mid n=0,1,2, \ldots\}$ as the complete orthonormal set of eigenstates of N, one has, in general,

$$
\begin{align*}
& a|0\rangle=0 \quad N|n\rangle=n|n\rangle \quad a|n\rangle=\alpha(n)|n-1\rangle \quad a^{\dagger}|n-1\rangle=\bar{\alpha}(n)|n\rangle \\
& a a^{\dagger}=|\alpha(N+1)|^{2} \quad a^{\dagger} a=|\alpha(N)|^{2} \tag{18}\\
& |n\rangle=\{\bar{\alpha}(n)!\}^{-1}\left(a^{\dagger}\right)^{n}|0\rangle \quad \bar{\alpha}(n)!=\prod_{k=1}^{n} \bar{\alpha}(k)
\end{align*}
$$

where the sequence $\left\{|\alpha(n)|^{2} \mid n=0,1,2, \ldots ; \alpha(0)=0\right\}$ characterizes the particular system. For the (p, q)-oscillator we have $\left\{|\alpha(n)|^{2}=[n]\right\}$. It is interesting to note that $[n]$ is the unique solution to the generalized Fibonacci recursion relation [27]
$[n+1]=\left(q+p^{-1}\right)[n]-q p^{-1}[n-1] \quad n \geqslant 1 \quad[1]=1 \quad[0]=0$.
Extending the relations ($15 b, c$) we can write, for $n \geqslant 1$,
$A\left(A^{\dagger}\right)^{n}=q^{n}\left(A^{\dagger}\right)^{n} A+[n]\left(A^{\dagger}\right)^{n-1} p^{-N}=p^{-n}\left(A^{\dagger}\right)^{n} A+[n]\left(A^{\dagger}\right)^{n-1} q^{N}$.
Analogous to the familiar boson realization of the q-oscillator

$$
\begin{equation*}
A=\left(\frac{[N+1]}{N+1}\right)^{1 / 2} b \quad A^{\dagger}=b^{\dagger}\left(\frac{[N+1]}{N+1}\right)^{1 / 2} \quad N=b^{\dagger} b \tag{21}
\end{equation*}
$$

for the (p, q)-oscillator, with $\left(b, b^{\dagger}\right)$ as the usual boson operators.
As already noted, p and q may be varied independently. For the boson $\left(|\alpha(n)|^{2}=n\right)$ $p=q=1$. For the fermion with $(q=-1, p=1)$ the sequence $\left\{|\alpha(n)|^{2}=[n]_{1,-1}\right\}$ has the first zero, after [0], at $n=2$ in accordance with the Pauli principle $A^{\dagger}|1\rangle=0$. It may be noted that, due to the $q \leftrightarrow p^{-1}$ symmetry, the fermion can also be described as a ($q=1, p=-1$)-oscillator as is verified directly by using the standard matrix representation. When $q=p(-p)$ the relations (15) reduce to the commutation properties of bosonic (fermionic) q-oscillators [5-10,18,19]. The choice $p=1$, with arbitrary q, corresponds to the deformed oscillators studied in [11-13]. The example ($q=0, p^{-1} \neq 0$) (or $q \neq 0, p^{-1}=0$) gives a deformation of a single mode of the oscillators exhibiting 'infinite statistics' [14]. Hereafter, by (p, q)-oscillator we refer to the generic case (15) with arbitrary p and q unless otherwise specified.

A representation of $\mathrm{su}_{p, q}(2)$ constructed from two mutually commuting sets of (p, q) -boson operators ($A_{1}, A_{1}^{\dagger}, N_{1}$) and ($A_{2}, A_{2}^{\dagger}, N_{2}$), \dot{a} la Jordan-Schwinger, may be given as

$$
\begin{equation*}
\tilde{J}_{0}=\frac{1}{2}\left(N_{1}-N_{2}\right) \quad \tilde{J}_{+}=\left(\tilde{J}_{-}\right)^{\dagger}=A_{1}^{\dagger}\left(q^{-1} p\right)^{N_{2} / 2} A_{2} \tag{22}
\end{equation*}
$$

The weight vectors $\{\mid j, m) \mid-j \leqslant m \leqslant j\}$ carrying the $(2 j+1)$-dimensional representation (11) are now

$$
\begin{equation*}
|j, m\rangle=\{\bar{\alpha}(j+m)!\bar{\alpha}(j-m)!\}^{-1}\left(A_{1}^{\dagger}\right)^{j+m}\left(A_{2}^{\dagger}\right)^{j-m}|0,0\rangle \quad|\alpha(n)|^{2}=[n] . \tag{23}
\end{equation*}
$$

The Casimir invariant in both its antipodal forms is

$$
\begin{align*}
C & =\left(q^{-1} p\right)^{J_{o}}\left(\left[\tilde{J}_{0}\right]\left[\tilde{J}_{0}+1\right]+q^{-1} p \tilde{J}_{-} \tilde{J}_{+}\right) \\
& =\left(q^{-1} p\right)^{J_{0}}\left(\tilde{J}_{+} \tilde{J}_{-}+q p^{-1}\left[\tilde{J}_{0}\right]\left[\tilde{J}_{0}-1\right]\right) . \tag{24}
\end{align*}
$$

The eigenvalues of C are given by

$$
\begin{equation*}
C|j, m\rangle=\left(q^{-1} p\right)^{j}[j][j+1]|j, m\rangle \tag{25}
\end{equation*}
$$

To facilitate the extension of the traditional q-analysis [28] to a (p, q)-analysis we make the following preliminary observations:

$$
\begin{align*}
& {\left.[n]\right|_{p} ^{-1}=q=n q^{n-1}} \tag{26a}\\
& {[-1]=-q^{-1} p} \tag{26b}
\end{align*} \quad[-n]=-\left(q^{-1} p\right)^{n}[n] . ~ l
$$

A generating function for [n] is

$$
\begin{equation*}
\sum_{n=0}^{\infty}[n] z^{n}=z\left\{(1-q z)\left(1-p^{-1} z\right)\right\}^{-1} \tag{27}
\end{equation*}
$$

Defining

$$
\begin{equation*}
\tilde{D}_{z} \psi(z)=\frac{\psi(q z)-\psi\left(p^{-1} z\right)}{q z-p^{-1} z} \tag{28}
\end{equation*}
$$

we have

$$
\begin{equation*}
\tilde{D}_{z} z^{n}=[n] z^{n-1} \tag{29}
\end{equation*}
$$

and
$\frac{z^{n+1}}{[n+1]}= \begin{cases}\left(q-p^{-1}\right) z \sum_{k=0}^{\infty} q^{-(k+1)} p^{-k}\left(q^{-(k+1)} p^{-k} z\right)^{n} & \text { for }|q p|>1 \\ \left(p^{-1}-q\right) z \sum_{k=0}^{\infty} p^{(k+1)} q^{k}\left(p^{(k+1)} q^{k} z\right)^{n} & \text { for }|q p|<1 .\end{cases}$
The (p, q)-exponential is defined by

$$
\begin{equation*}
\exp _{p, q}(z)=\sum_{n=0}^{\infty} z^{n} /[n]!\quad \tilde{D}_{z} \exp _{p, q}(\mu z)=\mu \exp _{p, q}(\mu z) \tag{31}
\end{equation*}
$$

This leads to the identification of the coherent states of the (p, q)-oscillator $\left.\left\{|z\rangle_{p, q}|A| z\right\rangle_{p, q}=z|z\rangle_{p, q}\right\}$ as

$$
\begin{align*}
& |z\rangle_{p, q}=N(z)\left\{\exp _{p, q}\left(z A^{\dagger}\right)\right\}|0\rangle \quad N(z)=\left\{\exp _{p, q}\left(|z|^{2}\right)\right\}^{-1 / 2} \tag{32}\\
& \langle\zeta \mid z\rangle=N(\zeta) N(z) \exp _{p, q}(\bar{\zeta} z) .
\end{align*}
$$

The (p, q)-deformation of the Bargmann-Fock representation closely follows the q-deformed case [29]. In the space of analytic functions of the complex variable z one has the correspondence

$$
\begin{equation*}
A \rightarrow \tilde{D}_{z} \quad A^{\dagger} \rightarrow z \quad N \rightarrow z \frac{\partial}{\partial z} \tag{33}
\end{equation*}
$$

and the inner product which makes z and \tilde{D}_{z} Hermitian conjugates is

$$
\begin{equation*}
(f, g)=\left.f\left(\tilde{D}_{z}\right) g(z)\right|_{z=0} \tag{34}
\end{equation*}
$$

The set of functions $\left\{\langle n \mid z\rangle=z^{n} /([n]!)^{1 / 2} \mid n=0,1,2, \ldots\right\}$ forms an orthonormal basis with respect to this inner product.

It is well known [30] that in the undeformed case the parafermi cretation and annihilation operators form realizations of $\mathrm{su}(2)$. This characteristic has been exploited [17] to define the q-analogue of the parafermi oscillator. To specify a single-mode (p, q)-parafermion of order $g=2 j\left(j=1, \frac{3}{2}, \ldots ; j=\frac{1}{2}\right.$ corresponds to the fermion) we identify the corresponding annihilation (F), creation $\left(F^{\dagger}\right.$) and the number (N) operators respectively with the $(2 j+1)$-dimensional representations of $\tilde{J}_{+}, \tilde{J}_{-}$and ($j-\tilde{J}_{0}$) of $\mathrm{su}_{\rho, q}(2)$. The Fock space representation is given by (16) with the identification $\left(a=F, a^{\dagger}=F^{\dagger}, \quad\left(\alpha(n)=\left\{\left(q^{-1} p\right)^{n-1}[n][g+1-n]\right\}^{1 / 2} \mid n=0,1,2, \ldots, g\right)\right)$. From the $\mathrm{su}_{p, 9}(2)$ algebra relations (3) and the properties of [n] like (17) it is straightforward to generate the (p, q)-extension of the characteristic triple commutation relations of the parafermi algebra. Note that when $g=1$ the (p, q)-parafermion is identical to the usual fermion independent of p and q. For $g>1$ the (p, q)-parafermion reduces to the usual parafermion in the limit $p=q=1$.

To obtain the $s u_{p, q}(1,1)$ algebra from $s u_{p, q}(2)$, we mimic the well known $s u(2) \leftrightarrow$ $\mathrm{su}(1,1)$ relation. We define

$$
\begin{equation*}
\tilde{K}_{0}=\tilde{J}_{0} \quad \tilde{K}_{+}=\mathrm{i}\left(q^{-1} p\right)^{1 / 2} \tilde{J}_{+} \quad \tilde{K}_{-}=\mathrm{i}\left(q^{-1} p\right)^{1 / 2} \tilde{J}_{-} \quad q, p>0 \tag{35}
\end{equation*}
$$

Note that $\mathrm{i}\left(q^{-1} p\right)^{1 / 2}=[-1]^{1 / 2}$ when $q, p>0$. Now, $\left(\tilde{K}_{0}, \tilde{K}_{ \pm}\right)$generate the $\mathrm{su}_{p, q}(1,1)$ algebra

$$
\begin{equation*}
\left[\tilde{K}_{0}, \tilde{K}_{ \pm}\right]= \pm \tilde{K}_{ \pm} \quad \tilde{K}_{-} \tilde{K}_{+}-q p^{-1} \tilde{K}_{+} \tilde{K}_{-}=\left[2 \tilde{K}_{0}\right] \tag{36}
\end{equation*}
$$

with the coproduct rules

$$
\begin{equation*}
\Delta\left(\tilde{K}_{0}\right)=\tilde{K}_{0} \otimes 1+1 \otimes \tilde{K}_{0} \quad \Delta\left(\tilde{K}_{ \pm}\right)=q^{\tilde{K}_{0} \otimes} \otimes \tilde{K}_{ \pm}+\tilde{K}_{ \pm} \otimes p^{-\tilde{K}_{0}} \tag{37}
\end{equation*}
$$

following readily from (5) and (35). The Casimir operator is

$$
\begin{equation*}
C=\left(q^{-1} p\right) \tilde{K}_{0}\left(\tilde{K}_{-} \tilde{K}_{+}-\left[\tilde{K}_{0}\right]\left[\tilde{K}_{0}+1\right]\right)=\left(q^{-1} p\right)^{\tilde{K}_{0}-1}\left(\tilde{K}_{+} \tilde{K}_{-}-\left[\tilde{K}_{0}\right]\left[\tilde{K}_{0}-1\right]\right) \tag{38}
\end{equation*}
$$

Substituting the $(2 j+1)$-dimensional representations (11) for $\mathrm{su}_{p, q}(2)$ in (35) one obtains the finite-dimensional non-Hermitian representations of $s u_{p, q}(1,1)$. In the j th representation C takes the value $[-j][j+1]$.

Hermitian realization of $\mathrm{su}_{q}(1,1)$ (which is $\mathrm{su}_{q, q}(1,1)$) has been constructed [20] by q-deforming a special case of the Holstein-Primakoff representation. An extension of this procedure to obtain a Hermitian realization of $s u_{p, q}(1,1)$ is straightforward:

$$
\begin{equation*}
\tilde{K}_{0}=N+\frac{1}{2} \quad \tilde{K}_{+}=\left(\tilde{K}_{-}\right)^{\dagger}=[N]^{1 / 2} A^{\dagger} . \tag{39}
\end{equation*}
$$

To verify that this realization satisfies the desired algebra relations (36) we use the identity

$$
\begin{equation*}
[n+1]^{2}-q p^{-1}[n]^{2}=[2 n+1] \tag{40}
\end{equation*}
$$

In the representation (39) C has the value $[1 / 2]^{2}$.
To construct a single mode (p, q)-parabose oscillator of order $g=2,3, \ldots$ we generalize the well known connection [30] between the undeformed parabose operators and $\operatorname{su}(1,1)$. Choosing in (16) $\left\{|\alpha(2 \nu)|^{2}=[2 \nu],|\alpha(2 \nu+1)|^{2}=[2 \nu+g] \mid \nu=0,1,2, \ldots\right\}$ the corresponding (p, q)-parabose operators, B (annihilation) and B^{\dagger} (creation), satisfy the relations

$$
[N, B]=-B \quad\left[N, B^{\dagger}\right]=B^{\dagger} \quad[1 / 2]\left\{B B^{\dagger}+\left(q p^{-1}\right)^{1 / 2} B^{\dagger} B\right\}=[N+g / 2]
$$

As in the parafermion case, (p, q)-generalized triple commutation relations for (B, B^{\dagger}, N) can be generated using the properties of $[n]$. When $g=1$, it is evident that the (p, q) -paraboson becomes the (p, q)-boson. In the limit $p=q, q$-parabosons [17] are obtained.

The identification

$$
\begin{equation*}
\tilde{K}_{0}=\frac{1}{2}(N+g / 2) \quad \tilde{K}_{+}=\left(\tilde{K}_{-}\right)^{\dagger}=[2]^{-1}\left(B^{\dagger}\right)^{2} \tag{42}
\end{equation*}
$$

leads to a realization of $\operatorname{su}_{p^{2}, q^{2}}(1,1)$ in view of the identity

$$
\begin{align*}
{[n+g][n+2] } & -\left(q p^{-1}\right)^{2}[n+g-2][n] \\
& =[n+g+1][n+1]-\left(q p^{-1}\right)^{2}[n+g-1][n-1] \\
& =[2]^{2}[n+g / 2]_{p^{2} . q^{2}} . \tag{43}
\end{align*}
$$

In this realization C takes the value $\left([g / 4]_{p^{2}, q^{2}}[1-g / 4]_{p^{2}, q^{2}}\right.$).

The relations (41), (42) are seen to generate a (p, q)-extension of the quantum superalgebra $\operatorname{osp}_{q}(2 \mid 1)$ [31]. With $V_{-}=B, V_{+}=B^{\dagger}$, we have a (p, q)-analogue of the graded su(1, 1)

$$
\begin{align*}
& \left\{V_{-} V_{+}+\left(q p^{-1}\right)^{1 / 2} V_{+} V_{-}\right\}=[1 / 2]^{-1}\left[2 \tilde{K}_{0}\right] \quad\left[\tilde{K}_{0}, V_{ \pm}\right]= \pm \frac{1}{2} V_{ \pm} \\
& \tilde{K}_{\mp} V_{ \pm}-\left(q p^{-1}\right)^{ \pm 1} V_{ \pm} \tilde{K}_{\mp}=([\pm 1] /[2])\left(q^{2 \tilde{K}_{0} \pm 1 / 2}+p^{-2 \tilde{K}_{0} \mp 1 / 2}\right) V_{\mp} \tag{44}\\
& \tilde{K}_{-} \tilde{K}_{+}-\left(q p^{-1}\right)^{2} \tilde{K}_{+} \tilde{K}_{-}=\left[2 \tilde{K}_{0}\right]_{p^{2}, q^{2}} .
\end{align*}
$$

Using the $\operatorname{su}(2) \leftrightarrow s u(1,1)$ connection (35) one can get a (p, q)-analogue of the graded $\mathrm{su}(2)$. In the limit $p=q, \operatorname{osp}_{p, q}(2 \mid 1) \rightarrow \operatorname{osp}_{q}(2 \mid 1)$. When $p=q=1$ the above results lead to the paraboson realizations of $\operatorname{osp}(2 \mid 1)[32,33]$.

Finally we mention that the (p, q)-oscillator algebra may be used to study a centreless (p, q)-Virasoro algebra. The analogous problem for the q-Virasoro algebra has been considered earlier [24,34-36]. For the (p, q)-Virasoro algebra

$$
\begin{equation*}
L_{n}=\left(A^{\dagger}\right)^{n+1} A \quad L_{n} L_{m}-q^{m-n} L_{m} L_{n}=[m-n] p^{-N+m} L_{m+n} \tag{45}
\end{equation*}
$$

A more symmetric deformation is obtained by introducing the generators $\hat{L}_{n}=p^{N} L_{n}$:

$$
\begin{align*}
& p^{n-m} \hat{L}_{n} \hat{L}_{m}-q^{m-n} \hat{L}_{m} \hat{L}_{n}=[m-n] \hat{L}_{m+n} \tag{46a}\\
& {\left[\hat{L}_{n}, \hat{L}_{m}\right]=[m-n] p^{N-n} q^{N-m} \hat{L}_{m+n} .} \tag{46b}
\end{align*}
$$

To obtain (46) we use the identity (20). The appearance of the ordinary commutator in (46b) immediately leads to the Jacobi identity

$$
\begin{equation*}
\left[\hat{L}_{k},\left[\hat{L}_{l}, \hat{L}_{m}\right]\right]+\text { cyclic permutations }=0 . \tag{47}
\end{equation*}
$$

We notice, however, that in contradistinction to the corresponding single-parameter case [36] we do not find the generators \hat{L}_{n} satisfying a deformed Jacobi identity. Using (20) and (46) we obtain a deformed su(1,1) subalgebra of the centreless (p, q)-Virasoro algebra

$$
\begin{align*}
& p^{-1} \hat{L}_{0} \hat{L}_{1}-q \hat{L}_{1} \hat{L}_{0}=\hat{L}_{1} \quad p^{-1} \hat{L}_{-1} \hat{L}_{0}-q \hat{L}_{0} \hat{L}_{-1}=\hat{L}_{-1} \\
& {\left[\hat{L}_{-1}, \hat{L}_{1}\right]=\left(q^{-1} p\right)[2]\left(\hat{L}_{0}+\left(q-p^{-1}\right) \hat{L}_{0}^{2}\right) .} \tag{48}
\end{align*}
$$

In summary, we have derived a (p, q)-analogue of the q-boson oscillator from the study of a (p, q)-deformed su(2) algebra and used it to construct the realizations of $\operatorname{su}_{p, q}(2), \operatorname{su}_{p, q}(1,1)$, $\operatorname{ssp}_{p, q}(2 \mid 1)$ and a centreless (p, q)-Virasoro algebra. The (p, q) analogues of the fermionic, parafermionic and the parabosonic oscillators have also been identified.

It is a pleasure to thank R Balasubramanian for a fruitful discussion on the identity (13).

References

[1] Drinfeld V G 1985 Sov. Math. Dokl. 32254
[2] Jimbo M 1985 Lett. Math. Phys. 1063
[3] Faddeev L D, Reshetikhin N Y and Takhtajan L A 1987 Quantization of Lie groups and Lie algebras Preprint LOMI E-14-87, Leningrad
[4] Curtright T L, Fairlie D B and Zachos C K (eds) 1991 Quantum Groups (Proc. Argonne Workshop) (Singapore: World Scientific)
[5] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[6] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[7] Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[8] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415
[9] Kundu A and Basu Mallick B $1990 q$-deformation of Holstein-Primakoff and other bosonisations of quantum group Preprint SINP/TNP/90-15, Calcutta
[10] Chaichian M and Kulish P P 1990 Quantum superalgebras, q-oscillators and applications Preprint CERN-TH. 5969/90
[11] Kuryshkin V V 1980 Ann. Found. L De Broglie 5111
[12] Jannussis A, Brodimas G, Sourlas D and Zisis V 1981 Lett. Nuovo Cimento 30123
[13] Madivanane S and Sathyanarayana M V 1984 Lett. Nuovo Cimento 4019
[14] Greenberg O W 1990 Phys. Rev. Lett. 64705
[15] Mohapatra R N 1990 Phys. Lett. 242B 407
[16] Chaturvedi S, Kapoor A K, Sandhya R, Srinivasan V and Simon R 1990 Generalized commutation relations for single mode oscillator Preprint University of Hyderabad
[17] Floreanini R and Vinet L 1990 J. Phys. A: Math. Gen. 23 L1019
[18] Chaichian M and Kulish P P 1990 Phys. Lett. 234B 72
[19] Parthasarathy R and Viswanathan K S 1990 A q-analog of the supersymmetric oscillator and its q-superalgebra Preprint Simon Fraser University
[20] Chaichian M, Ellinas D and Kulish P P 1990 Phys. Rev. Lett. 65980
[21] Demidov E E, Manin Yu I, Mukhin E E and Zhdanovich D V 1990 Nonstandard quantum deformations of GL(n) and consistent solution of the Yang-Baxter equations Preprint RIMS-701, Kyoto
[22] Sudbery A 1990 J. Phys. A: Math. Gen. 23 L697
[23] Takeuchi M 1990 Proc. Japan Acad. 66A 112
[24] Curtright T L and Zachos C K 1990 Phys. Lett. 243B 237
[25] Polychronakos A P 1990 Mod. Phys. Lett. 5A 2325
[26] Schirrmacher A, Wess J and Zumino B 1991 Z. Phys. C 49317
[27] Niven I and Zuckerman H S 1972 An Introduction to the Theory of Numbers 3rd edn (New York: Wiley) p 96
[28] Exton H 1983 q-Hypergeometric Functions and Applications (Chichester: Ellis Horwood)
[29] Floratos E G 1990 The many-body problem for the q-osci!lators Preprint LPTENS $90 / 25$, Paris
[30] Jordan T F, Mukunda N and Pepper S V 1963 J. Math. Phys. 41089
[31] Kulish P P and Reshetikhin N Y 1989 Lett. Math. Phys. 18143
[32] Jagannathan R and Vasudevan R 1981 J. Math. Phys. 222294
[33] Uma S N 1981 Phys. Scr. 24938
[34] Bernard D and LeClair A 1989 Phys. Lett. 227B 417
[35] Chaichian M, Kulish P P and Lukierski J 1990 Phys. Lett. 237B 401
[36] Chaichian M, Ellinas D and Popowicz Z 1990 Phys. Lett. 258B 95

