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Abstract. It is noted that the study of a quantum algebra su,,(Z). with two independent 
defamation parameters ( p .  9).  leads to a ‘ ( p ,  q)-oscillator’ realization for it. The analysis 
is extended to the ( p .  q)-analogues ofsu(1, 1). osp(Z/I) and the centreless Virasoro algebra. 
The standard single-parameter (9) deformations are obtained in the limit p = 9. 

Quantum algebras [l,  21 arise as the underlying mathematical structure in several 
contexts like quantum inverse scattering theory, solutions of the Yang-Baxter equation, 
and rational conformal field theory [3,4]. These algebras may be viewed as deforma- 
tions of classical Lie algebras, depending, in general, on one or more parameters. The 
representation theory of quantum algebras with a single deformation (or quantization) 
parameter q, has led to the development of q-deformed oscillator algebras [S-lo]. 
Similar deformed oscillator algebras have been studied earlier [ll-131 with a view to 
exploring new quantization procedures. These q-oscillators may lead to a new kind 
of field theory where a small violation of the Pauli exclusion principle and deviations 
from the Bose statistics may be discussed [14-161. In addition, the q-analogues of the  
parabose gnd parafermi oscillators [I71 and the supersymmetric quantum mechanical 
algebras [18,19] have been considered. The implications of q-deformed algebraic 
structures in concrete physical models such as the Jaynes-Cummings model in quantum 
optics have been investigated [20]. 

From the point of view of applicability in concrete physich models, quantum 
algebras with multiparameter deformations [21-231 are of interest. But it has been 
argued [24,2S] that any quantum algebra with one or more deformation parameters 
may be mapped onto the standard single-parameter case. Recently, while studying a 
two-parameter ( p ,  q )  deformation of GL(2) it has been noted [26] that the correspond- 
ing quantum algebra g1,,(2) may be mapped onto the standard deformation of gl(2) 
with a single parameter equal to 6. However, significantly, it has been emphasized 
in [26] that p and q are two genuinely independent quantization parameters as exhibited 
by the comultiplication rules and the structure of the endomorphisms of the quantum 
group acting on the underlying non-commutative space as embodied in the R-matrix. 
Now, knowing the convenience of the language of q-oscillators in describing the 
representations of the quantum algebras with a single deformation parameter q, it is 
natural to seek a ‘ ( p ,  q)-oscillator’ realization of the ( p .  q)-deformed algebras. Here, 
we first notice that there is a ( p ,  q)-oscillator realization for a ( p ,  q)-deformed su(2); 
then, the analysis is extended to the ( p ,  q)-analogues of su(1, I ) ,  osp(211) and the 
centreless Virasoro algebra. 
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To define an sup,,(2) algebra, we start, as implied by [26] ,  by considering the 
standard deformation of su(2) with a single parameter equal to 6 

Using a map J + j defined by 

we obtain the commutation relations 

where we define 

The commutation relations (3) constitute an suP.*(2) algebra with ( j o , j , )  as the 
generators. Note that in the limit p = q ,  [ X l p , , + [ X ] ,  and sup~,(2)+su,(2) .  The co- 
product rules 

( 5 )  a(jo)=jooi+iofo a L )  = q j OoL+i,op-j~ 
refer to an algebra homomorphism for (3). The 4-p-I symmetry in (3), and con- 
sequently in (9, reduces to  the q-q-'  symmetry in the case of s~$). 

The commutation relations ( 3 )  may be described in terms of an R-matrix [3 ,26] .  
With 

R = ( i  qF 8 h = q - p - '  ( 6 )  

(7) 

q 0 0 0  

a constant solution to the Yang-Baxter equation, the relations (3) translate to 

R(L'"l'@ l)(l@L'sz)) = (l@L"~))(L"~'@ l ) R  

where (-,+), (-,-) and 

The coproduct is determined by 
A(L(')) = ,5(')&"('' (9) 

where @ denotes the tensor product combined with the usual matrix multiplication. 
As emphasized in [26] ,  it is seen that the deformation parameters p and q may be 
varied independently. Hereafter, [ X I , ,  defined by ( 4 )  for any X, will be denoted, in 
general, simply as [ X I ;  similarly, in other (p, q)-related expressions the 'p, q' index 
will not be, in general, exhibited explicitly. 

Following [24,25],  the nonlinear maps relating the generators (lo, j + ,  j -  = ( j + ) + )  of 
the classical su(2) to the corresponding elements of sup,,(2) may be defined as 
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for an integral or half-integral j. Now, the (2j + 1)-dimensional representation follows 
immediately 

m =j, j-1.. . . , -j 
(11) 

jdj, m ) =  mIj, m )  

j*l,, m )  = {(q-~p)j-m-(~*~l/2 [jr m ] [ j i  m + 1]}'"1 j, m i  1). 

~ 9 ~ ' P ~ " 2 ~ ~ ~ l l ~ ~ z + ~ l - ~ ~ * l ~ ~ , + ~ l ~ = ~ ~ l - ~ z l .  (12) 

To check that this representation satisfies the algebra (3) we use the identity 

In the limit p = q this identity reduces to the familiar relation 

[n1lq[nz+ 1l,-[nzlq[nl+ l l q  =[n1-n21q. (13) 

Except when p and q are such that p-" = 9" for some n >0, suRq(2), s u ~ ( 2 )  and 
su(2) provide nonlinear realizations of each other and their representation theories 
have close kinship. We take, throughout, p and q to he real, and such, that [n] > 0 for 
any n > 0, unless otherwise specified. 

Let us now consider the representation (1 1) in the limit j -+ Co. Defining 

N = j+m lim ( j  - jo) ~ = ( A t ) t = l i ~ ( ~ ~ ~ ) ( j - j ~ ) / ~ [ , +  j -m j 0 ] - ~ / 2 j +  (14) 

it is found that the spectrum of N becomes (0,  1,2,. . .) and 

[N, A] = -A [N,A']=At 

AAt-qA'A=p-N 

A A ' - P - ' A ' A = ~ ~ .  

To see this, one has to note that in the representation (11) 

AA'= [ N +  11 A'A = [NI 

and the definition (4) implies 

[n + 13 = g[n]+p-" =p-'[n]+ q' for n = 0, 1,2 , .  . . . (17) 

It is natural to identify A, A' and N, obeying the commutation relations (15), respec- 
tively as the annihilation, creation and the excitation number operators of a '(p, 9)- 
oscillator' since in the limit p = q the relations characterize the q-oscillator. Thus, we 
notice that the su , , (2)  algebra (3) leads to a (p, q)-oscillator in the same way as the 
4 2 )  algebra leads to the 9-oscillator under contraction [lo]. It may be noted that 
the relations (15b) and (15c) imply each other and this 9c)p-l  symmetry generalizes 
the 9-9-I symmetry of the q-oscillator. 

The Fock space representation of a single-mode (p, 9)-oscillator may be specified 
as follows. Let a, a' and N denote, generally, the annihilation, creation and the number 
operators. With {In) 1 n = 0, 1,2,. . .) as the complete orthonormal set of eigenstates of 
N, one has, in general, 
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where the sequence {la(n)121n =0, 1,2, .  . . ; n(0)  =0] characterizes the particular sys- 
tem. For the (p, q)-oscillator we have {la(n)l'=[n]}. It is interesting to note that [n]  
is the unique solution to the generalized Fibonacci recursion relation [27] 

[n+ l l= (q+p- ' ) [n l -qp- ' [n - l l  n 3 l  [l] = 1 [O] = 0. (19) 

A(A')" = q'(A')"A + [ r~](A')"- 'p-~ = p-"(A')"A+ [n](A')"-'q". (20) 

Extending the relations (156, e )  we can write, for n 3 1, 

Analogous to the familiar boson realization of the q-oscillator 

for the (p, q)-oscillator, with (b, b') as the usual boson operators. 
As already noted, p and q may be varied independently. For the boson (la(n)12 = n) 

p = q = l .  Forthe fermion with ( q = - l , p = l )  thesequence {Ia(n)12=[n]1.-,] has the 
first zero, after [O], at n = 2 in accordance with the Pauli principle Atl 1) = 0. It may 
be noted that, due to the q -p-' symmetry, the fermion can also be described as a 
(q = 1, p = -1)-oscillator as is verified directly by using the standard matrix representa- 
tion. When q = p  (-p) the relations (15) reduce to the commutation properties of 
bosonic (fermionic) q-oscillators [5-10, 18, 191. The choice p = 1, with arbitrary q, 
corresponds to the deformed oscillators studied in [ 11-13]. The example (q = 0, p-' # 0) 
(or q # 0, p-' = 0) gives a deformation of a single mode of the oscillators exhibiting 
'infinite statistics' [14]. Hereafter, by (p, q)-oscillator we refer to the generic case (15) 
with arbitrary p and q unless otherwise specified. 

A representation of su,,(2) constructed from two mutually commuting sets of 
(p, q)-boson operators (Al,  A:, NI) and (Az, A:, N z ) ,  a la Jordan-Schwinger, may be 
given as 

j 0 -~ - ;( NI - N2) j+ = (j-)+ =A:(q-'p)N'/2A2. (22) 

The weight vectors {I j, m)l - j  s m S j }  carrying the (2j + 1)-dimensional representation 
(11) are now 

I j, m) = (a '( j+ m ) ! & ( j -  m)!)~'(A:)''"(A:)'-"lO, 0) (23) 14n)12 = [nl .  

The eigenvalues of C are given by 

clj, m) = (q- '~) ' [ j l [ J+  lllj, m).  (25) 

To facilitate the extension of the traditional q-analysis [28] to a (p, q)-analysis we 
make the following preliminary observations: 

" -1  [n1lp-Lq=nq 

[-1]= -y-'p [-n] = -(q-'p)"[n]. 

A generating function for [n]  is 
m 

1 [nlz" =z{(l-qz)(l-p-~z)}- ' .  (27) 
" = O  
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Defining 

we have - 
D,z" = [n]z"-' 

and 

The ( p ,  q)-exponential is defined by 
m 

expp,,(z) = 1 z"/[nI! Ez exp,,(p.r) = P exp, , (w).  (31) 

This leads to the identification of the coherent states of the (p,q)-oscillator 
i lLip,q 1 - l ~ i P . 9  - -IGip,.i 

n=0 

11-\ I Al..\ --I.\ 1 "^  

2 -111 l ~ ) ~ , ,  = N(z)hp,&A')}lo) N(z)=Iexpp,,(lzl 

(LIZ)= N ( c ) N ( z )  expp,,(&). 
(32) 

The ( p ,  q)-deformation of the Bargmann-Fock representation closely follows the 
q-deformed case [29] .  In the space of analytic functions of the complex variable z one 
has the correspondence 

(33) 

and the inner product which makes z and Hermitian conjugates is 

(f; g )  = f ( h ( z ) l , = o .  (34) 

The set of functions ( (n l z )=r" / ( [n ] ! )"* ln  =0, 1 ,2 , .  . .} forms an orthonormal basis 
with respect to this inner product. 

It is well known [30] that in the undeformed case the parafermi cretation and 
annihilation operators form realizations of su(2). This characteristic has been exploited 

( p.  q)-parafermion of order g = 2j ( j  = 1, f ,  . . . ; j = f corresponds to the fermion) we 
identify the corresponding annihilation ( F ) ,  creation (F')  and the number (N) 
operators respectively with the (2 j+ 1)-dimensional representations of j+ ,  j -  and 
( j  - io) of su,,(2). The Fock space representation is given by (16)  with the identification 
(a = F, a'= F', (n(n)={(q- 'p)"- ' [n] [g+ I - n ] ) ' / 2 ( n = 0 ,  1 , 2 , .  . . , g)). From the 
su.J2) " . V .  algebra relations (3) and the properties of [ n ]  like (17) it is straightforward 
to generate the (p, q)-extension of the characteristic triple commutation relations of 
the parafermi algebra. Note that when g = 1 the ( p ,  q)-parafermion is identical to the 
usual fermion independent of p and q. For g > 1 the ( p .  q)-parafermion reduces to 
the usual parafermion in the limit p = q = 1. 

[!?I t O  define the g=ana!ag..e c?f the pmfermi nsci!!atnr. r, specify 2 sing!c=z%x!e 
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To obtain the su,,(l,  1) algebra from su,,(2), we mimic the well known su(2)ct 
su(1,I) relation. We define 

KO= Jo + - ~(q- ' p ) ' /~ j+  i- = i(q-'p)'l2L 4,P>O. (35) k - '  
- .  

Note that i(q"p)"2=[-ll"2 when q,p>O. Now, ($, z+) generate the su,,(l, 1) 
algebra 

[C,m*]=*m* ew, - qp2.w- = [2$] (36) 

with the coproduct rules 

A (  $) = io@ 1 + 1 0  to A(k+) = q"@&,+ k+@p-"a (37) 

following readily from (5) and (35). The Casimir operator is 

c = ( q - ' p ) " q _ B +  -[201[%+ 11) = (q - 'p )"O- ' (k+k  -[ko][ko-l]). (38) 

Substituting the ( 2 j +  1)-dimensional representations (11) for su,,(2) in (35) one 
obtains the finite-dimensional non-Hermitian representations of sur,( 1,l). In the j th  
representation C takes the value [-jl[j+ll. 

Hermitian realization of su,(l,  1) (which is su,,(l,  1)) has been constructed [ZO] 
by ¶:deforming a special case of the Holstein-F'rimakoff representation. An extension 
- F A : -  t- -I.+-:- - Unn.iri-- m-li..di-..  ,4 -.. I I  1 i i. .t.o:nl.tC-....o.rl. 
"L U..) Y'VCC"Y.C L U  ""L"... " I . C . I . I . L L P . I  IC"LIIL"LI"II "1 " Y p , q \ l ,  1, 1r, 'LL".6..""."".". - 

K , , = N + ~  E, = (k)' = [N]"2A'. (39) 

To verify that this realization satisfies the desired algebra relations (36) we use the 
identity 

[n+1]2-qp-l[n]2=[2n +1]. (40) 

In the representation (39) C has the value [1/212. 
To construct a single mode (p, q)-parabose oscillator of order g = 2,3,. . . we 

generalize the well known connection [30] between the undeformed parabose operators 
and su(1,l). Choosing in (16) {la(2v)12=[2v], l a (2~+1)1~=[2v+g] lv=O,  L2, .  ..) 
the corresponding (p, q)-parabose operators, B (annihilation) and Bt (creation), satisfy 
!8C :c!a!ia-s 

[ N, B] = -B [N,B']=B' [1/2]{BB' +(qp-')1/2BtB) = [N+g/2]. (41) 

As in the parafermion case, (p, ¶)-generalized triple commutation relations for 
(B, B', N)  can be generated using the properties of [ n]. When g = 1, it is evident that 
the (p, q)-paraboson becomes the (p, q)-boson. In the limit p =  q, q-parabosons [17] 

nhtn;nnA 
".U ""L'.II.CY. 

The identification 

k o -~ - :(N + g/2) k+=(k_)'=[Z]-'(B')2 (42) 

leads to a realization of sup2,,2(1, 1) in view of the identity 

[ n  + gl[n +21- (qp-')*[n + g -ZI[nl 
= [ n + g +  l l [n  + l]-(qp-')2[n+g- 1l[n -11 

= [212[n +g/21,.,,2. 

In this realization C takes the value ([g/4Ip2,,~[l -g/4],~.,2). 

(43) 
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The relations (41), (42) are seen to generate a ( p .  q)-extension of the quantum 
superalgebra ospq(211) [31]. With V- = B, V+ = B', we have a ( p ,  q)-analogue of the 
graded su(1,l) 

I v- v++ (4p-1)1I2v+v_) = [ l/zl-'[2kol 
k7 v* - (*-')*I v*k, = ([*1]/[2])(q2'""'2+ P - - 2 I Z g W Z  ) VT 
k_~+-(*-')*~+k_=[Z%],l ,~'.  

[ko, V*]=*ttV* 
(44) 

Using the su(2)usu(l ,  1) connection (35) one can get a ( p ,  q)-analogue of the graded 
su(2). In the limit p = q, ospp,,(211)+ osp,(211). When p = q = 1 the above results lead 
to the paraboson realizations of osp(211) [32,33]. 

Finally we mention that the (p, q)-oscillator algebra may be used to study a 
centreless ( p ,  q)-Virasoro algebra. The analogous problem for the q-Virasoro algebra 
has been considered earlier [24,34-361. For the ( p ,  q)-Virasoro algebra 

A more symmetric deformation is obtained by introducing the generators in = p N L . :  

pn-mi.i ,-qm-nL,, ,Ln = [ m  - n]i,+. (46a) 
[in, i , l = [ m - n ~ p ~ - ' q ~ - m i ~ + ~ .  (46b) 

To obtain (46) we use the identity (20). The appearance of the ordinary commutator 
in (466) immediately leads to the Jacobi identity 

L, = ( A + ) " + ~ A  L J ,  -q"-"L,L, = [ m -  r~]p-~+"'L"+~. (45) 

* "  

[ik, [if, i,ll+cyclic permutations =o. (47) 
We notice, however, that in ContradistiFction to the corresponding single-parameter 
case [36] we do not find the generators L. satisfying a deformed Jacobi identity. Using 
(20) and (46) we obtain a deformed su(1,l) subalgebra of the centreless ( p ,  q)-Virasoro 
algebra 

1 .  ^ ^  
p - l i 0 i , - q i 1 i o = i ,  p-'L-ILo-qLoL-I = i-, [L, i l l  = (q-lp)[2l(i ,+(q-p-' , i~).  (48) 

In summary, we have derived a ( p ,  q)-analogue of the q-boson oscillator from the 
study of a ( p ,  q)-deformed 4 2 )  algebra and used it to construct the realizations of 
su,J2), su , , ( l ,  1). osp,,,,(2Il) and a centreless ( p ,  q)-Virasoro algebra. The (p ,  4)-  
analogues of the fermionic, parafermionic and the parabosonic oscillators have also 
been identified. 

It is a pleasure to thank R Balasubramanian fora fruitful discussion on the identity (13). 
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